Полезно знать - Автомобильный портал

Энтропия данных. Информационная энтропия. Формула Шеннона. Сообщения на естественном языке

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

Энтропия (теория информации)

Энтропи́я (информационная) - мера хаотичности информации , неопределённость появления какого-либо символа первичного алфавита . При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n -ого порядка, см. ) встречаются очень редко, то неопределённость ещё более уменьшается.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии , получившему название демона Максвелла . Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Формальные определения

Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины X , имеющей конечное число значений:

I (X ) = − logP X (X ).

Тогда энтропия будет определяться как:

От основания логарифма зависит единица измерения информации и энтропии: бит , нат или хартли .

Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n ) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения . Величина называется частной энтропией , характеризующей только i -e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i , умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей .

В общем случае b -арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где p i является вероятностью a i (p i = p (a i ) ) определяется формулой:

Определение энтропии Шеннона связано с понятием термодинамической энтропии . Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Альтернативное определение

Другим способом определения функции энтропии H является доказательство, что H однозначно определена (как указано ранее), если и только если H удовлетворяет условиям:

Свойства

Важно помнить, что энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию − 2(0,5log 2 0,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

Эффективность

Исходный алфавит, встречающийся на практике, имеет вероятностное распределение, которое далеко от оптимального. Если исходный алфавит имел n символов, тогда он может быть сравнён с «оптимизированным алфавитом», вероятностное распределение которого однородно. Соотношение энтропии исходного и оптимизированного алфавита - это эффективность исходного алфавита, которая может быть выражена в процентах.

Из этого следует, что эффективность исходного алфавита с n символами может быть определена просто как равная его n -арной энтропии.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически - типичного набора или, на практике, - кодирования Хаффмана , кодирования Лемпеля - Зива - Велча или арифметического кодирования .

Вариации и обобщения

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а следовательно и энтропия) очевидно меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть вероятности двухбуквенных сочетаний):

где i - это состояние, зависящее от предшествующего символа, и p i (j ) - это вероятность j , при условии, что i был предыдущим символом.

Так, для русского языка без буквы « » .

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемые канальные матрицы . Так, для описания потерь со стороны источника (то есть известен посланный сигнал), рассматривают условную вероятность получения приёмником символа b j при условии, что был отправлен символ a i . При этом канальная матрица имеет следующий вид:

b 1 b 2 b j b m
a 1
a 2
a i
a m

Очевидно, вероятности, расположенные по диагонали описывают вероятность правильного приёма, а сумма всех элементов столбца даст вероятность появления соответствующего символа на стороне приёмника - p (b j ) . Потери, приходящиеся на передаваемый сигнал a i , описываются через частную условную энтропию:

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

Означает энтропию со стороны источника, аналогично рассматривается - энтропия со стороны приёмника: вместо всюду указывается (суммируя элементы строки можно получить p (a i ) , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия, или энтропия объединения , предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается H (A B ) , где A , как всегда, характеризует передатчик, а B - приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий p (a i b j ) , и для полного описания характеристик канала требуется только одна матрица:

p (a 1 b 1) p (a 1 b 2) p (a 1 b j ) p (a 1 b m )
p (a 2 b 1) p (a 2 b 2) p (a 2 b j ) p (a 2 b m )
p (a i b 1) p (a i b 2) p (a i b j ) p (a i b m )
p (a m b 1) p (a m b 2) p (a m b j ) p (a m b m )

Для более общего случая, когда описывается не канал, а просто взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером j даст p (b j ) , сумма строки с номером i есть p (a i ) , а сумма всех элементов матрицы равна 1. Совместная вероятность p (a i b j ) событий a i и b j вычисляется как произведение исходной и условной вероятности,

Условные вероятности производятся по формуле Байеса . Таким образом имеются все данные для вычисления энтропий источника и приёмника:

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

H (A B ) = − p (a i b j )logp (a i b j ).
i j

Единица измерения - бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов - отправленного и полученного. Путём несложных преобразований также получаем

Взаимная энтропия обладает свойством информационной полноты - из неё можно получить все рассматриваемые величины.

История

Примечания

См. также

Ссылки

  • Claude E. Shannon. A Mathematical Theory of Communication (англ.)
  • С. М. Коротаев.

Информация и энтропия

Обсуждая понятие информация, невозможно не затронуть другое смежное понятие – энтропия. Впервые понятия энтропия и информация связал К.Шеннон.

Клод Элвуд Шеннон (Claude Elwood Shannon ), 1916-2001 - дальний родственник Томаса Эдисона, американский инженер и математик, был сотрудником Bell Laboratories с 1941 дo 1972 г. В его работе "Математическая теория связи" (http://cm.bell-labs.com/cm/ms/what/shannonday/), опубликованной в 1948 г., впервые определялась мера информационного содержания любого сообщения и понятие кванта информации - бита. Эти идеи легли в основу теории современной цифровой связи. Другая работа Шеннона "Communication Theory of Secrecy Systems", опубликованная в 1949 г., способствовала превращению криптографии в научную дисциплину. Он является основателем теории информации , нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления - науки, объединяемые понятием «кибернетика».

Физическое определение энтропии

Впервые понятие энтропии ввел Клаузиус в 1865 г. как функцию термодинамического состояния системы

где Q – теплота, T - температура.

Физический смысл энтропии проявляется как часть внутренней энергии системы, которая не может быть превращена в работу. Клаузиус эмпирически получил эту функцию, экспериментируя с газами.

Л.Больцман (1872г.) методами статистической физики вывел теоретическое выражение энтропии

где К – константа; W – термодинамическая вероятность (количество перестановок молекул идеального газа, не влияющее на макросостояние системы).

Энтропия Больцмана выведена для идеального газа и трактуется как мера беспорядка, мера хаоса системы. Для идеального газа энтропии Больцмана и Клаузиуса тождественны. Формула Больцмана стала настолько знаменитой, что начертана в качестве эпитафии на его могиле. Сложилось мнение, что энтропия и хаос есть одно и то же. Несмотря на то, что энтропия описывает только идеальные газы, ее некритично стали привлекать для описания более сложных объектов.

Сам Больцман в 1886г. попытался с помощью энтропии объяснить, что такое жизнь. По мнению Больцмана, жизнь это явление, способное уменьшать свою энтропию. Согласно Больцману и его последователям, все процессы во Вселенной изменяются в направлении хаоса. Вселенная идет к тепловой смерти. Этот мрачный прогноз долго господствовал в науке. Однако углубление знаний об окружающем Мире постепенно расшатали эту догму.

Классики не связывали энтропию с информацией .

Энтропия как мера информации

Заметим, что понятие "информация" часто трактуется как "сведения", а передача информации осуществляется с помощью связи. К. Шеннон рассматривал энтропию как меру полезной информации в процессах передачи сигналов по проводам.

Для расчета энтропии Шеннон предложил уравнение, напоминающее классическое выражение энтропии, найденное Больцманом. Рассматривается независимое случайное событие x с N возможными состояниями и p i -вероятность i-го состояния. Тогда энтропия события x

Эта величина также называется средней энтропией. Например, речь может идти о передаче сообщения на естественном языке. При передаче различных букв мы передаем разное количество информации. Количество информации на букву связано с частотой употреблений этой буквы во всех сообщениях, формируемых на языке. Чем более редкую букву мы передаем, тем больше в ней информации.

Величина

H i = P i log 2 1/P i = ‑P i log 2 P i ,

называется частной энтропией, характеризующей только i-e состояние.

Поясним на примерах . При бросании монеты выпадает орел или решка, это определенная информация о результатах бросания.

Для монеты число равновероятных возможностей N = 2. Вероятность выпадения орла (решки) равна 1/2.

При бросании кости получаем информацию о выпадении определенного количества очков (например, трех). В каком случае мы получаем больше информации?

Для кости число равновероятных возможностей N = 6. Вероятность выпадения трех очков кости равна 1/6. Энтропия равна 2.58. Реализация менее вероятного события дает больше информации. Чем больше неопределенность до получения сообщения о событии (бросание монеты, кости), тем большее количество информации поступает при получении сообщения.

Такой подход к количественному выражению информации далеко не универсален, т. к. принятые единицы не учитывают таких важных свойств информации, как ее ценность и смысл. Абстрагирование от конкретных свойств информации (смысл, ценность ее) о реальных объектах, как в дальнейшем выяснилось, позволило выявить общие закономерности информации. Предложенные Шенноном для измерения количества информации единицы (биты) пригодны для оценки любых сообщений (рождение сына, результаты спортивного матча и т. д.). В дальнейшем делались попытки найти такие меры количества информации, которые учитывали бы ее ценность и смысл. Однако тут же терялась универсальность: для разных процессов различны критерии ценности и смысла. Кроме того, определения смысла и ценности информации субъективны, а предложенная Шенноном мера информации объективна. Например, запах несет огромное количество информации для животного, но неуловим для человека. Ухо человека не воспринимает ультразвуковые сигналы, но они несут много сведений для дельфина и т. д. Поэтому предложенная Шенноном мера информации пригодна для исследования всех видов информационных процессов, независимо от "вкусов" потребителя информации.

Измерение информации

Из курса физики вы знаете, что прежде, чем измерять значение какой-либо физической величины, надо ввести единицу измерения. У информации тоже есть такая единица - бит, но смысл ее различен при разных подходах к определению понятия “информация”.

Существует несколько разных подходов к проблеме измерения информации.

Клод Элвуд Шеннон (1916-2001) -
американский инженер и математик,
основатель теории информации,
т.е. теории обработки, передачи
и хранения информации

Клод Шеннон первым начал интерпретировать передаваемые сообщения и шумы в каналах связи с точки зрения статистики, рассматривая как конечные, так и непрерывные множества сообщений. Клода Шеннона называют «отцом теории информации» .

Одной из самых известных научных работ Клода Шеннона является его статья «Математическая теория связи» , опубликованная в 1948 году.

В этой работе Шеннон, исследуя проблему рациональной передачи информации через зашумленный коммуникационный канал, предложил вероятностный подход к пониманию коммуникаций, создал первую, истинно математическую, теорию энтропии как меры случайности и ввёл меру дискретного распределения p вероятности на множестве альтернативных состояний передатчика и приёмника сообщений.

Шеннон задал требования к измерению энтропии и вывел формулу, ставшую основой количественной теории информации:

H (p) .

Здесь n - число символов, из которых может быть составлено сообщение (алфавит), H - информационная двоичная энтропия .

На практике значения вероятностей p i в приведённой формуле заменяют их статистическими оценками: p i - относительная частота i -го символа в сообщении, где N - число всех символов в сообщении, N i - абсолютная частота i -го символа в сообщении, т.е. число встречаемости i -го символа в сообщении.

Во введении к своей статье «Математическая теория связи» Шеннон отмечает, что в этой статье он расширяет теорию связи, основные положения которой содержатся в важных работах Найквиста и Хартли .

Гарри Найквист (1889-1976) -
американский инженер шведского
происхождения, один из пионеров
теории информации

Первые результаты Найквиста по определению ширины частотного диапазона, требуемого для передачи информации, заложили основы для последующих успехов Клода Шеннона в разработке теории информации.

В 1928 году Хартли ввёл логарифмическую меру информации H = K · log 2 N , которую часто называют хартлиевским количеством информации.

Хартли принадлежит следующая важная теорема о необходимом количестве информации: если в заданном множестве M , состоящем из N элементов, содержится элемент x , о котором известно только то, что он принадлежит этому множеству M , то, чтобы найти x , необходимо получить об этом множестве количество информации, равное log 2 N бит.

Кстати, отметим, что название БИТ произошло от английской аббревиатуры BIT - BInary digiT . Этот термин впервые был предложен американским математиком Джоном Тьюки в 1946 году. Хартли и Шеннон использовали бит как единицу измерения информации.

Вообще, энтропия Шеннона - это энтропия множества вероятностей p 1 , p 2 ,…, p n .

Ральф Винтон Лайон Хартли (1888-1970)
- американский учёный-электронщик

Строго говоря, если X p 1 , p 2 ,…, p n - вероятности всех её возможных значений, то функция H (X ) задаёт энтропию этой случайной величины, при этом, хотя X и не является аргументом энтропии, можно записывать H (X ).

Аналогично, если Y - конечная дискретная случайная величина, а q 1 , q 2 ,…, q m - вероятности всех её возможных значений, то для этой случайной величины можно записывать H (Y ).

Джон Уайлдер Тьюки (1915-2000) -
американский математик. Тьюки избрал
бит для обозначения одного разряда
в двоичной системе счисления

Шеннон назвал функцию H (X )энтропией по совету Джона фон Неймана .

Нейман убеждал: эту функцию следует назвать энтропией «по двум причинам. В первую очередь, Ваша функция неопределённости была использована в статистической механике под этим именем, так что у неё уже есть имя. На втором месте, и что более важно, никто не знает, что такое энтропия на самом деле, так что в дискуссии Вы всегда будете иметь преимущество» .

Надо полагать, что этот совет Неймана не был простой шуткой. Скорее всего, и Джон фон Нейман и Клод Шеннон знали об информационной интерпретации энтропии Больцмана как о величине, характеризующей неполноту информации о системе.

В определении Шеннона энтропия - это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения .

7. Энтропия Колмогорова

Андрей Николаевич
Колмогоров (1903-1987) -
советский учёный, один из крупнейших
математиков XX века

А.Н. Колмогоровым были получены фундаментальные результаты во многих областях математики, в том числе в теории сложности алгоритмов и теории информации.

В частности, ему принадлежит ключевая роль в превращении теории информации, сформулированной Клодом Шенноном как технической дисциплины, в строгую математическую науку, и в построении теории информации на принципиально иной, отличной от шенноновской, основе.

В своих работах по теории информации и в области теории динамических систем А.Н. Колмогоров обобщил понятие энтропии на эргодические случайные процессы через предельное распределение вероятностей. Чтобы понять смысл этого обобщения, необходимо знать основные определения и понятия теории случайных процессов.

Значение энтропии Колмогорова (еще называемой K-энтропией ) задает оценку скорости потери информации и может интерпретироваться как мера «памяти» системы, или мера скорости «забывания» начальных условий. Её можно также рассматривать как меру хаотичности системы.

8. Энтропия Реньи

Альфред Реньи (1921-1970) -
венгерский математик, создатель
Математического института в Будапеште,
ныне носящего его имя

Ввёл однопараметрический спектр энтропий Реньи.

С одной стороны, энтропия Реньи представляет собой обобщение энтропии Шеннона. А с другой стороны, одновременно с этим она представляет собой обобщение расстояния (расхождения) Кульбака-Лейблера . Отметим также, что именно Реньи принадлежит полное доказательство теоремы Хартли о необходимом количестве информации.

Расстояние Кульбака-Лейблера (информационная дивергенция, относительная энтропия) - это несимметричная мера удалённости друг от друга двух вероятностных распределений .

Обычно одно из сравниваемых распределений является «истинным» распределением, а второе распределение - предполагаемым (проверяемым) распределением, являющимся приближением первого.

Пусть X , Y - это конечные дискретные случайные величины, для которых области возможных значений принадлежат заданному множеству и известны функции вероятности: P (X = a i ) = p i и P (Y = a i ) = q i .

Тогда значение DKL расстояния Кульбака-Лейблера вычисляется по формулам

D KL (X , Y ) =, D KL (Y , X ) = .

В случае абсолютно непрерывных случайных величин X , Y , заданных своими плотностями распределения, в формулах для вычисления значения расстояния Кульбака-Лейблера суммы заменяются соответствующими интегралами.

Расстояние Кульбака-Лейблера всегда является неотрицательным числом, при этом оно равно нулю D KL (X , Y ) = 0 тогда и только тогда, когда для заданных случайных величин почти всюду справедливо равенство X = Y .

В 1960 году Альфред Реньи предлагает своё обобщение энтропии.

Энтропия Реньи представляет собой семейство функционалов для количественного разнообразия случайности системы. Реньи определил свою энтропию как момент порядка α меры ε-разбиения (покрытия).

Пусть α - заданное действительное число, удовлетворяющее требованиям α ≥ 0, α ≠ 1. Тогда энтропия Реньи порядка α определяется формулой H α = H α (X ), где p i = P (X = x i ) - вероятность события, состоящего в том, что дискретная случайная величина X окажется равна своему соответствующему возможному значению, n - общее число различных возможных значений случайной величины X .

Для равномерного распределения, когда p 1 = p 2 =…= p n =1/n , все энтропии Реньи равны H α (X ) = ln n .

В противном случае, значения энтропий Реньи слабо уменьшаются при возрастании значений параметра α. Энтропии Реньи играют важную роль в экологии и статистике как индексы разнообразия.

Энтропия Реньи также важна в квантовой информации, она может быть использована в качестве меры сложности.

Рассмотрим некоторые частные случаи энтропии Реньи для конкретных значений порядка α:

1. Энтропия Хартли : H 0 = H 0 (X ) = ln n , где n - мощность области возможных значений конечной случайной величины X , т.е. количество различных элементов, принадлежащих множеству возможных значений;

2. Информационная энтропия Шеннона : H 1 = H 1 (X ) = H 1 (p ) (определяется как предел при α → 1, который несложно найти, например, с помощью правила Лопиталя);

3. Корреляционная энтропия или столкновение энтропии : H 2 = H 2 (X )= - ln (X = Y );

4. Min-энтропия : H ∞ = H ∞ (X ).

Отметим, что для любого неотрицательного значения порядка (α ≥ 0) всегда выполняются неравенства H ∞ (X ) ≤ H α (X ). Кроме того, H 2 (X ) ≤ H 1 (X ) и H ∞ (X ) ≤ H 2 (X ) ≤ 2·H ∞ (X ).

Альфред Реньи ввёл не только свои абсолютные энтропии (1.15), он определил также спектр мер расхождений, обобщающих расхождения Кульбака-Лейбнера.

Пусть α - заданное действительное число, удовлетворяющее требованиям α > 0, α ≠ 1. Тогда в обозначениях, использованных при определении значения D KL расстояния Кульбака-Лейблера, значение расхождения Реньи порядка α определяется формулами

D α (X , Y ), D α (X , Y ).

Расхождение Реньи также называют alpha -расхождением или α-дивергенцией. Сам Реньи использовал логарифм по основанию 2, но, как всегда, значение основания логарифма абсолютно неважно.

9. Энтропия Тсаллиса

Константино Тсаллис (род. 1943) -
бразильский физик
греческого происхождения

В 1988 году предложил новое обобщение энтропии, являющееся удобным для применения с целью разработки теории нелинейной термодинамики.

Предложенное им обобщение энтропии, возможно, в ближайшем будущем сможет сыграть существенную роль в теоретической физике и астрофизике.

Энтропия Тсаллиса Sq , часто называемая неэкстенсивной (неаддитивной) энтропией, определяется для n микросостояний согласно следующей формуле:

S q = S q (X ) = S q (p ) = K · , .

Здесь K - размерная константа, если размерность играет важную роль для понимания задачи.

Тсаллис и его сторонники предлагают развивать «неэкстенсивную статистическую механику и термодинамику» в качестве обобщения этих классических дисциплин на случай систем с длинной памятью и/или дальнодействующими силами.

От всех других разновидностей энтропии, в т.ч. и от энтропии Реньи, энтропия Тсаллиса отличается тем, что не является аддитивной. Это принципиальное и важное отличие .

Тсаллис и его сторонники считают, что эта особенность даёт возможность построить новую термодинамику и новую статистическую теорию, которые способы просто и корректно описывать системы с длинной памятью и системы, в которых каждый элемент взаимодействует не только с ближайшими соседями, но и со всей системой в целом или её крупными частями.

Примером таких систем, а поэтому и возможным объектом исследований с помощью новой теории, являются космические гравитирующих системы: звёздные скопления, туманности, галактики, скопления галактик и т.п.

Начиная с 1988 года, когда Константино Тсаллис предложил свою энтропию, появилось значительное число приложений термодинамики аномальных систем (с длиной памятью и/или с дальнодействующими силами), в том числе и в области термодинамики гравитирующих систем.

10. Квантовая энтропия фон Неймана

Джон (Янош) фон Нейман (1903-1957) -
американский математик и физик
венгерского происхождения

Энтропия фон Неймана играет важную роль в квантовой физике и в астрофизических исследованиях.

Джон фон Нейман внёс значительный вклад в развитие таких отраслей науки, как квантовая физика, квантовая логика, функциональный анализ, теория множеств, информатика и экономика.

Он являлся участником Манхэттенского проекта по разработке ядерного оружия, одним из создателей математической теории игр и концепции клеточных автоматов, а также основоположником современной архитектуры компьютеров.

Энтропия фон Неймана, как всякая энтропия, связана с информацией: в данном случае - с информацией о квантовой системе. И в этом плане она играет роль фундаментального параметра, количественно характеризующего состояние и направление эволюции квантовой системы.

В настоящее время энтропия фон Неймана широко используется в различных формах (условная энтропия, относительная энтропия и т.д.) в рамках квантовой теории информации.

Различные меры запутанности непосредственно связаны с энтропией фон Неймана. Тем не менее, в последнее время появился ряд работ, посвящённых критике энтропии Шеннона как меры информации и возможной её неадекватности, и, следовательно, неадекватности энтропии фон Неймана как обобщения энтропии Шеннона.

Проведенный обзор (к сожалению, беглый, а порой и недостаточно математически строгий) эволюции научных взглядов на понятие энтропии позволяет дать ответы на важные вопросы, связанные с истинной сущностью энтропии и перспективами применения энтропийного подхода в научных и практических исследованиях. Ограничимся рассмотрением ответов на два таких вопроса.

Первый вопрос : имеют ли между собой многочисленные разновидности энтропии, как рассмотренные, так и не рассмотренные выше, что-нибудь общее кроме одинакового названия?

Этот вопрос возникает естественным образом, если принять во внимание то разнообразие, которое характеризует существующие различные представления об энтропии.

На сегодня научное сообщество не выработало единого, признанного всеми, ответа на этот вопрос: одни учёные отвечают на этот вопрос утвердительно, другие - отрицательно, третьи - относятся к общности энтропий различных видов с заметной долей сомнения...

Клаузиус, по-видимому, был первым учёным, убеждённым в универсальном характере энтропии и полагавшим, что во всех процессах, происходящих во Вселенной, она играет важную роль, в частности, определяя их направление развития во времени.

Кстати, именно Рудольфу Клаузиусу принадлежит одна из формулировок второго начала термодинамики: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» .

Эту формулировку второго начала термодинамики называют постулатом Клаузиуса , а необратимый процесс, о котором идёт речь в этом постулате, - процессом Клаузиуса .

Со времени открытия второго начала термодинамики необратимые процессы играли уникальную роль в физической картине мира. Так, знаменитая статья 1849 года Уильяма Томпсона , в которой приведена одна из первых формулировок второго начала термодинамики, называлась «Об универсальной тенденции в природе к диссипации механической энергии».

Отметим также, что и Клаузиус был вынужден использовать космологический язык: «Энтропия Вселенной стремится к максимуму» .

Илья Романович Пригожин (1917-2003) -
бельгийско-американский физик и
химик российского происхождения,
лауреат Нобелевской премии
по химии 1977 года

К аналогичным выводам пришёл Илья Пригожин . Пригожин полагает, что принцип энтропии ответственен за необратимость времени во Вселенной и, возможно, играет важную роль в понимании смысла времени как физического феномена.

К настоящему времени выполнено множество исследований и обобщений энтропии, в том числе и с точки зрения строгой математической теории. Однако заметная активность математиков в этой области пока не востребована в приложениях, за исключением, пожалуй, работ Колмогорова , Реньи и Тсаллиса .

Несомненно, энтропия - это всегда мера (степень) хаоса, беспорядка. Именно разнообразие проявления феномена хаотичности и беспорядка обусловливает неизбежность разнообразия модификаций энтропии.

Второй вопрос : можно ли признать сферу применения энтропийного подхода обширной или все приложения энтропии и второго начала термодинамики ограничиваются самой термодинамикой и смежными направлениями физической науки?

История научного изучения энтропии свидетельствует, что энтропия - это научное явление, открытое в термодинамике, а затем успешно перекочевавшее в другие науки и, прежде всего, в теорию информации.

Несомненно, энтропия играет важную роль практически во всех областях современного естествознания: в теплофизике, в статистической физике, в физической и химической кинетике, в биофизике, астрофизике, космологии и теории информации.

Говоря о прикладной математике, нельзя не упомянуть приложения принципа максимума энтропии.

Как уже отмечалось, важными областями применения энтропии являются квантово-механические и релятивистские объекты. В квантовой физике и астрофизике такие применения энтропии представляют собой большой интерес.

Упомянем лишь один оригинальный результат термодинамики чёрных дыр: энтропия чёрной дыры равна четверти площади её поверхности (площади горизонта событий) .

В космологии считается, что энтропия Вселенной равна числу квантов реликтового излучения, приходящихся на один нуклон.

Таким образом, сфера применения энтропийного подхода весьма обширна и включает в себя самые разнообразные отрасли знания, начиная с термодинамики, других направлений физической науки, информатики и заканчивая, например, историей и экономикой.

А.В. Сигал , доктор экономических наук, Крымский университет имени В.И. Вернадского

1. Введение.

2. Что измерил Клод Шеннон?

3. Пределы эволюционной изменчивости информационных систем.

4. Ограниченность адаптации биологических видов.

5. Этапы развития теории энтропии.

6. Методы исчисления количества структурной информации и информационной энтропии текстов.

7. Информационно-энтропийные соотношения процессов адаптации и развития.

8. Информация и энергия.

9. Заключение.

10. Список литературы.

ВВЕДЕНИЕ

Во второй половине XX века произошли два события, которые, на наш взгляд, в значительной мере определяют дальнейшие пути научного постижения мира. Речь идет о создании теории ин­формации и о начале исследований механизмов антиэнтропийных процессов, для изучения которых синергетика привлекает все новейшие достижения неравновесной термодинамики, теории ин­формации и общей теории систем.

Принципиальное отличие данного этапа развития науки от предшествующих этапов заключается в том, что до создания перечисленных направлений исследований наука способна была объяснить лишь механизмы процессов, приводящих к увеличению хаоса и возрастанию энтропии. Что касается разрабатываемых со времен Ламарка и Дарвина биологических и эволюционных концепций, то они и по сей день не имеют строгих научных обоснований и противоречат Второму началу термодинамики, согласно которому сопровождающее все протекающие в мире процессы возрас­тание энтропии есть непременный физический закон.

Заслуга неравновесной термодинамики заключается в том, что она сумела выявить механизмы антиэнтропийных процессов, не противоречащих Второму началу термодинамики, поскольку локаль­ное уменьшение энтропии внутри самоорганизующейся системы всегда оплачивается большим по абсолютной величине возрас­танием энтропии внешней среды.

Важнейшим шагом на пути постижения природы и механизмов антиэнтропийных процессов следует введение количественной меры информации. Первоначально эта мера предназначалась лишь для решения сугубо прикладных задач техники связи. Однако последующие исследования в области физики и биологии позво­лили выявить универсальные меры, предложенные К.Шен­ноном, позволяющие установить взаимосвязь между количеством информации и физической энтропией и в конечном счете определить сущность новой научной интерпретации понятия «ин­формация» как меры структурной упорядоченности самых разнообразных по своей природе систем.

Используя метафору, можно сказать, что до введения в науку единой информационной количественной меры представленный в естественно-научных понятиях мир как бы «опирался на двух китов»: энергию и вещество. «Третьим китом» оказалась теперь информация, участвующая во всех протекающих в мире процессах, начиная от микрочастиц, атомов и молекул и кончая функциониро­ванием сложнейших биологических и социальных систем.

Естественно, возникает вопрос: подтверждают или опровергают эволюционную парадигму происхождения жизни и биологических видов новейшие данные современной науки?

Для ответа на этот вопрос необходимо прежде всего уяснить, какие именно свойства и стороны многогранного понятия «ин­формация» отражает та количественная мера, которую ввел в науку К.Шеннон.

Использование меры количества информации позволяет анализировать общие механизмы информационно-энтропийных взаимодействий, лежащих в основе всех самопроизвольно протекающих в окружающем мире процессов накопления информации, которые приводят к самоорганизации структуры систем.

Вместе с тем информационно-энтропийный анализ позволяет выявить и пробелы эволюционных концепций, представляющих собой не более чем несостоятельные попытки сведения к простым механизмам самоорганизации проблему происхождения жизни и биологических видов без учета того обстоятельства, что системы такого уровня сложности могут быть созданы лишь на основе той информации, которая изначально заложена в предшествующий их сотворению план.

Проводимые современной наукой ис­следования свойств информационных систем дают все основания утверждать, что все системы могут формироваться только сог­ласно спускаемым с верхних иерархических уровней правилами, причем сами эти правила существовали раньше самих систем в форме изначального плана (идеи творения).

ЧТО ИЗМЕРИЛ КЛОД ШЕННОН?

В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредска­зуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам техничес­кой связи.

Предложенный Шенноном метод измерения количества ин­формации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.

Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и фи­зических, и биологических, и социальных систем.

Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фунда­мент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.

Многие ученые (начиная с самого К.Шеннона) склонны были рассматривать такое заимствование как чисто формальный прием. Л.Бриллюэн показал, что между вычисленным согласно Шеннону количеством информации и физической энтропии существует не формальная, а содержательная связь.

В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к макси­мальной величине.

Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от сос­тояния максимальной энтропии системы, как, например, пись­менный текст.

Еще один важный вывод заключается в том, что

с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.

Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др.

При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и мо­лекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллекту­альных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычис­ляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным зна­чением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, ко­торые в своей совокупности образуют эти системы.

Другими словами,

количество сохраняемой в структуре системы ин­формации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком.

Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.

Опредеделив введенную Шеноном информационную меру как меру упорядоченности движения , можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения . При этом ко­личество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем.

Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия отно­сящихся к различным уровням сложности информационных систем.

Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, пере­кодировки поступающих из внешнего мира сигналов, информаци­онными каналами связи. Хранимая в них информация как бы «размазана» по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упо­рядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.

Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, су­мевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.

Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком ин­формационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многокле­точных организмах помимо информационной системы наследствен­ности действуют специализированные органы хранения ин­формации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слу­ховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.